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Thermodynamic and Mechanical Properties
of Skeletal Muscle Contraction
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Thermodynamic parameters such as the change of entropy, internal energy,
and enthalpy were calculated as a function of the relative skeletal muscle
strain within the framework of a proposed thermodynamic model. A value
for the Young’s modulus for the skeletal muscle was also estimated. The
obtained theoretical values are in a good agreement with available experimen-
tal results for the frog skeletal muscle contraction.
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1. INTRODUCTION

Muscle, as a complex biophysical system, draws the attention of many
researchers. It is conditioned mainly by newly received experimental data
[1–4] on muscle contraction, in particular of a force, which is developed by
a fiber of skeletal muscle under loading (the so-called equation of state) and
electrical stimulation and its dependence on length, speed, and other phys-
ical parameters. It was determined that the obtained experimental results
did not quite match the postulates of a model of skeletal muscle contrac-
tion, known as the theory of sliding [5]. Therefore, it is needed to explain
these experimental facts within the framework of a correct mechanism of
contraction and to develop an adequate mathematical formulation.
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First of all, it should be noted that all contraction models in one way
or another are connected with the dynamics of the myosin–actin complex
within the sarcomere (the smallest moving unit of skeletal muscle). For
example, an active movable unit of a sliding model [6] is a heavy frac-
tion of myosin (the head of a myosin molecule). In addition, the sliding
model has two submodels, one of which is based on the inactivity of a
light fraction of myosin and the activity of its heavy fraction, while the
other one, on the contrary, is based on the contracting activity of a light
fraction with a heavy fraction functioning as a connector of myosin and
actin filaments. According to another mechanism [7], the contraction of
skeletal muscle is a result of twisting of myosin filaments into the tub-
iform structures, formed by actin filaments. The contraction is possible
because of the interdomain motion of two molecule heads, which, in turn,
move. Pollack’s model [1] is based on the “stepwise” contraction of muscle
fiber. Davydov’s model [8] is based on motion as well, but that of a soli-
ton, which stimulates the reciprocal movement of both myosin and actin
filaments. There is another model [9], which is based on stimulation of
α-helical segments of albumin, but unlike Davydov’s model, it is focused
not on the soliton motion, but on a deformation reaction of α-helix to
stimulation. Although the concepts concerning the mechanism of contrac-
tion show considerable differences, all the existing models are connected
with the motion (“sliding,” “twisting,” “stepwise,” “soliton,” etc.). In addi-
tion, this motion should be asynchronous in different parts of a sarcomere
and in different points of time to provide (during the process of contrac-
tion) constant interaction between actin and myosin. Such asynchronism
means simultaneous presence in a sarcomere of all possible impulse val-
ues of moving elements, independent of what is meant under the “mov-
ing element,” that is, regardless of the model. Besides, these are the
elements, which can be considered as a one-dimensional gas of non-inter-
acting particles (at least to a first approximation). Therefore, it’s obvi-
ous that to explain experimental data on skeletal muscle contraction, one
should use methods of statistical physics for a one-dimensional gas of
non-interacting particles.

2. MODEL AND DISCUSSION

Let’s consider a biological system – sarcomere (its length ∼ 2.5µm),
stimulation of which results in contraction. In consequence, in such a
continuum – one-dimensional gas, emerge movements with continuous or
quasi-continuous set of impulses p = –hk (–h is Planck’s constant and k is
a wave vector), which represents the sarcomere function.
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As is known [10], the physical behavior of any system is determined
by its statistical sum Z, taken over all probable states. In this case, these
states are determined by the value of a wave number k. In other words,
the statistical sum is given by the formula

Z=
∑

k

e−
E(k)
� , (1)

where the energy of a system may be written as

E (k)=
–h2k2

2m
. (2)

Here, m is a mass of an active motor element and �= kBT , where kB is
the Boltzmann constant and T is an absolute temperature.

Substituting Eq. (2) into Eq. (1), we get

Z=
∑

k

e−
–h2

k2
2m� . (3)

Equation (3) is used to find the statistical sum. Since the problem is
one-dimensional, in this formula we can change from summing to integra-
tion by area, where values of k have physical significance: 4π

l
≤ |k| ≤ π

2a ,
where l is a length of a region under review (length of a sarcomere) and
a is the smallest area in a system (it varies in different models). Then

Z= l

π

∫ π
2a

4π
l

e−
–h2

k2
2m� dk. (4)

Assuming

–h2k2

2m�
=X2 (5)

we get

Z=4
Φ (X2)−Φ (X1)

X1
, (6)

where

X1 = 4π–h

l
√

2m�
= l0

l
, (7)

X2 = π–h

2a
√

2m�
= l0

8a
, (8)

Φ (X)=
∫ X

0
e−t

2
dt. (9)
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Here l0 = 4π–h√
2m�

is a parameter, which has a dimension of length and
can equal or be proportional to the initial length of a sarcomere. This
implies that the length of a sarcomere depends on temperature as in

l∼ 1√
T
. (10)

Let’s estimate the value of X2 and the function Φ(X2), assuming l0 ∼
2.5µm and a∼20 nm (this value corresponds to the length of the head of
a myosin molecule [6] and to the length of a “skip” in Pollack’s model [1]):
X2 ∼15.6 and Φ(15.6)∼Φ (∞)=

√
π

2 =0.89.
With regard to the function Φ(X1), we decompose into a Taylor

series to the second non-zero term inclusive, that is,

Φ (X1)=X1 − X3
1

3
. (11)

Then the statistical sum (Eq. (3)) is

Z=4
0.89−X1 + X3

1
3

X1
,

or, taking into account Eq. (7),

Z=4

{
0.89

l

l0
−1+ 1

3

(
l

l0

)2
}
. (12)

Using the calculated statistical sum (Eq. (12)), we find the free energy of
the system;

F =−� lnZ=−� ln 4−� ln

{
0.89

l

l0
−1+ 1

3

(
l

l0

)2
}
. (13)

Since the change of a muscle volume as a function of its strain at iso-
baric conditions (P = const) is insignificant (P∆V ≈ 0), the change of the
Helmholtz free energy of the system can be written as

∆F ≈−f∆l−S∆T, (14)

where the contraction force f is concentrated in the opposite direction
from the direction of muscle contraction and is a function of its relative
deformation, ε= ∆l

l0

f (ε)=−
(
∂F

∂l

)

T

=f0ϕ(ε),
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Fig. 1. Force of the muscle contraction (referenced to the amplitude value f0) as
a function of relative deformation ε using Eq. (16).

where

f0 = kBT

l0
, (15)

ϕ(ε)= 0.223+1.78ε+3.56ε2 +0.89ε3

0.223+0.89ε+2.34ε2 +2.56ε3 +0.89ε4
. (16)

Equation (16) is plotted in Fig. 1. As we can see, it has a maximum value
at εc =0.25, which, although the phases of contraction and relaxation are
simultaneous, divides them. This value corresponds to the “physiological”
muscle length 1.25l0. The increase of this length can lead to irreversible
changes in the muscle, which, under such conditions, loses its ability to
contract. The maximum possible lengthening of a muscle in our case is
1.9l0(ε0 =0.9). The theoretical curve in Fig. 1 agrees qualitatively with the
data of well-known classical experiments on stress–strain properties of a
frog skeletal muscle, as cited in Refs. 1 and 6.

From Eqs. (15) and (10) we note that the contraction force of a mus-
cle depends on temperature,

f ∼kBT 3/2. (17)
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Fig. 2. Change of system entropy (referenced to the Boltzmann constant kB) as
a function of relative deformation ε using Eq. (20).

The entropy of the system is given by the formula:

S(ε)=−
(
∂F

∂T

)

l

=kB lnφ(ε),

φ(ε)= 0.893+2.68ε+6.68ε2 +3.56ε3

(1+ ε)2 . (18)

The change of internal energy and enthalpy is given by the formula

∆U(ε)≈∆H =−f∆l+T∆S, (19)

where, using Eqs. (10) and (17), the isothermal change of the entropy of a
system can be written as

∆S(ε)=−
∫ f0

f0ϕ(ε)

(
∂l

∂T

)

f

df ∼−kB

2
lnϕ(ε). (20)

Equation (20) is plotted in Fig. 2. As we can see, on the strain of the mus-
cle, the value of entropy decreases and reaches its minimum value at the
point εc =0.25. However, the tendency of a strained muscle to contract is
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Fig. 3. Change of system internal energy (referenced to the thermal energy kBT )
as a function of relative deformation ε using Eq. (21).

determined by a spontaneous tendency of the entropy to increase, which
occurs at εc<ε≤ ε0.

Substituting Eq. (20) into Eq. (19), we get

∆U(ε) ≈ ∆H ∼−kBT ψ(ε),

ψ(ε) = εϕ(ε)+ lnϕ(ε)
2

. (21)

Equation (21) is shown in Fig. 3. As we can see, its minimum value is at
ε0 = 0.9, which corresponds to the maximum possible muscle strain 1.9l0.
In the investigated area of a length change of relative muscle deformation,
the change of enthalpy ∆H <0, in other words, the system, evolves heat.

Finally, muscle tension is given by the formula,

σ(ε)= f

s
= f0

s
ϕ(ε). (22)

From this we obtain the formula for its Young’s modulus,

E= dσ

dε

∣∣∣∣
ε=0

≈4
f0

s
, (23)

where s is a squire of a muscle crosscut. From experiments [3, 11] we know
that f0

s
≈ (0.1 – 0.3) MPa (the maximum value of isometric strain of a frog
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Fig. 4. Muscle tension as a function of relative deformation ε using Eq. (24).

skeletal muscle). Consequently, we have E ≈ (0.4–1.2) MPa (for compari-
son: E≈8 MPa for rubber).

The calculated muscle tension by the equation,

σ(ε)≈ 〈E〉
4
ϕ(ε) (24)

is given in Fig. 4 (here 〈E〉=0.8 MPa). As one can see, the obtained σ(ε)
dependence for the f (ε) function (Fig. 1) has a maximum value at εc =
0.25, and further it falls with an increase of lengthening muscle.

3. CONCLUSION

Within the framework of the proposed model of the skeletal muscle
contraction, which is based on the general principles of statistical physics,
it was possible first to analytically calculate a change in the internal energy
and enthalpy of this system and to estimate its Young’s modulus. The
obtained theoretical results agree qualitatively with the known classical
experiments from the study of the mechanical properties of the frog skel-
etal muscle contraction. One particularly interesting result, in our opin-
ion, is the establishment of the temperature dependence of the sarcomere
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length and force of the muscle contraction, which requires further experi-
mental examination.
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